主要经历:
2007年至2011年 清华大学土木工程系 本科
2011年至2016年 清华大学土木工程系 博士
2016年至2019年 中山大学 特聘副研究员
2019年至今 中山大学 副教授
研究方向:
计算力学与余能原理数值方法、结构健康监测与损伤识别、反问题与病态问题方法、非线性系统识别与试验、对偶理论
科研项目:
国家自然科学基金青年项目,弹塑性不可压问题的平衡有限元法研究,在研 主持
广东省自然科学基金,动力余能原理理论与其应用研究,在研 主持
科研论文(第一或通讯作者):
[1] Wang L, Zhong H. A traction-based equilibrium finite element free from spurious kinematic modes for linear elasticity problems. International journal for numerical methods in engineering 2014, 99(10): 763-788.
[2] Wang L*, Zhong H. Stable linear traction-based equilibrium elements for elastostatics: Direct access to linear statically admissible stresses and quadratic kinematically admissible displacements for dual analysis. International journal for numerical methods in engineering 2015, 101(12): 887-932.
[3] Wang L, Zhong H. A unified approach to strict upper and lower bounds of quantities in linear elasticity based on constitutive relation error estimation. Computer methods in applied mechanics and engineering 2015, 288(1): 332-353.
[4] Wang L, Guo M, Zhong H. Strict upper and lower bounds of quantities for beams on elastic foundation by dual analysis. Engineering computations 2015, 32(6): 1619-1642.
[5] Wang L*, Zhong H. Strict upper and lower bounds of stress intensity factors at 2D elastic notches based on constitutive relation error estimation. Computational mechanics 2015, 56(5): 739-752.
[6] Wang L, Chamoin L, Ladevèze P, Zhong H. Computable upper and lower bounds on eigenfrequencies. Computer methods in applied mechanics and engineering 2016, 302: 27-43.
[7] Wang L*, Zhong H. A time finite element method for structural dynamics, Applied Mathematical Modelling 2017, 41: 445-461.
[8] Wang L*, Zhong H. Upper and lower bounds on quantities of interest for contact problems. Computer methods in applied mechanics and engineering 2017, 317: 817-835.
[9] Lu ZR, Wang L*. An enhanced response sensitivity approach for structural damage identification: convergence and performance. International journal for numerical methods in engineering 2017, 111: 1231-1251.
[10] Wang L, Liu J, Lu ZR*. Incremental response sensitivity approach for parameter identification of chaotic and hyperchaotic systems. Nonlinear dynamics 2017, 89: 153-167.
[11] Wang L*, Lu ZR, Liu ZQ. Complementary energy principle for elastodynamics: Free of volumetric locking. International journal of solids and structures 2017, 120: 103-114.
[12] Lu ZR, Yao R, Wang L*, Liu JK. Identification of nonlinear hysteretic parameters by enhanced response sensitivity approach. International Journal of Non-Linear Mechanics 2017, 96: 1–11.
[13] Wang L*, Zhong H. Strict upper and lower bounds of quantities in linear second-order systems. Applied mathematical modelling 2018, 57: 535-552.
[14] Lu ZR, Zhou J, Wang L*. On choice and effect of weight matrix for response sensitivity-based damage identification with measurement and model errors. Mechanical systems and signal processing 2019, 114: 1-24.
[15] Guo J, Wang L*, Takewaki I. Modal-based structural damage identification by minimum constitutive relation error and sparse regularization. Structural control and health monitoring 2018; 25:e2255. https://doi.org/10.1002/stc.2255.
[16] Wang L, Lu ZR. Sensitivity-free damage identification based on incomplete modal data, sparse regularization and alternating minimization approach. Mechanical systems and signal processing, 2019, 120: 43-68.
[17] Lu ZR, Liu G, Liu JK, Chen YM, Wang L*. Parameter identification of nonlinear fractional-order systems by enhanced response sensitivity approach. Nonlinear dynamics 2019, 95(2): 1495-1512.
[18] Guo J, Wang L*, Takewaki I. Frequency response-based damage identification in frames by minimum constitutive relation error and sparse regularization. Journal of sound and vibration 2019, 443: 270-292.
[19] Guo J, Wang L*, Takewaki I. Static damage identification in beams by minimum constitutive relation error. Inverse Problems in Science and Engineering 2019, 27(10): 1347-1371.
[20] Lu ZR, Wang L*. Cavity identification in elastic structures by explicit domain mapping and boundary mode sensitivity analysis. European Journal of Mechanics / A Solids 2019, 75: 109-127.
[21] Wang L, Huang M, Lu ZR*. Blind separation of structural modes by compact-bandwidth regularization. Mechanical systems and signal processing 2019, 131: 288-316.
[22] Lu ZR, Pan T, Wang L*. A sparse regularization approach to inverse heat source identification. International journal of heat and mass transfer 2019, 142: 118430.
[23] Guo J, Wang L*, Takewaki I. Experimental investigation on use of regularization techniques and pre-post measurement changes for structural damage identification. International journal of solids and structures 2019, https://doi.org/10.1016/j.ijsolstr.2019.08.026