个人简介
张清瑞博士作为中山大学“百人计划”青年学术人才加入中山大学航空航天学院。于2013年在哈尔滨工业大学获得自动化专业学士学位;于2019年在加拿大多伦多大学航空宇航研究所(University of Toronto Institute for Aerospace Studies, UTIAS),获得航空航天科学与技术博士学位。曾在荷兰代尔夫特理工大学(TU Delft)从事博士后研究工作。
目前,主要面向无人系统的自主性、鲁棒性和协同性需求,开展机器人学习控制、运动规划、鲁棒可靠控制以及集群控制等方面的研究工作,应用背景包括高??鱿挛奕舜Э煽靠刂?、复杂地形下四足机器人运动控制、多无人机编队飞行、集群系统协同规划等。期望通过融合传统控制思想与学习控制的数据驱动特性,全面挖掘无人系统本体潜能,提升安全可靠性,拓展其在更广泛场景中的应用。
研究领域
- 机器人学习与控制(Robot Learning & Control);
- 集群规划与控制(Swarm Planning & Control);
- 多机协同编队与应用(Multi-UAV Formation Flight & Its Applications);
- 无人系统鲁棒可靠控制(Robust and Reliable Control of Unmanned Systems)。
目前要研究方向包括无人系统的集群规划与控制 (主)、四足机器人的学习控制(副)和无人船艇的安全可靠控制(副)。如果你对本人研究领域及当前研究方向感兴趣,非?;队ü缱佑始滴?(本校学生可以预约面谈)。沟通前,请仔细查看下面要求。
【招生要求】:1.对无人机、机器人的规划与控制具有强烈的兴趣,具有足够好奇心、主动性,对数理公式不排斥(如果喜爱则更好);2.对于科研有较高的自我要求,对科研项目有正确认知,具有内驱力、自律性;3.工作态度端正,对待事情有责任心,积极努力上进;4.有必要的基础知识和编程技能,包括自动控制原理(必要)、无人机动力学与控制、最优化理论与方法、Python(必要)/C++等;5.对于做实物试验或代码的实物/硬件部署不排斥,有相关经验的更佳。感兴趣的同学欢迎随时沟通。(要求1-3是必要项)
联系方式
E-mail: zhangqr9@mail.sysu.edu.cn
通讯地址:深圳市光明区新湖街道公常路66号
工作经历
2023年6月 - 至今,中山大学航空航天学院,副教授
2020年9月 - 2023年6月,中山大学航空航天学院,助理教授
2019年9月 - 2020年9月,Delft University of Technology (TU Delft),The Netherlands,博士后
教育经历
2013年9月 - 2019年3月,The Institute for Aerospace Studies, University of Toronto, 博士研究生
2009年9月 - 2013年7月,哈尔滨工业大学,控制科学与工程系, 本科
授课情况
- 自动控制原理(航空航天工程本科必修课,春季学期)
- 现代控制理论基?。ㄑ芯可诵目纬?,秋季学期)
项目主持
2024年01月-2026年12月,广东省自然科学基金面上项目,主持
2024年01月-2025年12月,机器人全国广东省自然科学基金面上项目,主持
2022年09月-2025年08月,深圳市自然科学基金面上项目,主持
2022年10月-2024年09月,国家级纵向课题,主持
2022年01月-2024年12月,国家自然科学基金青年项目,主持
实验室条件
当前实验室条件包括运动捕捉系统、四旋翼无人机、地面无人车、四足机器人等。

代表性成果
论文(*通讯作者)
[28] Guobin Zhu, Qingrui Zhang*, Bo Zhu, Tianjiang Hu,Heuristic Predictive Control for Multi-Robot Flocking in Congested Environments, 2024 (Accepted by IEEE/ASME Transactions on Mechatronics)
[27] Zhiyuan Xiao, Xinyu Zhang, Xiang Zhou, Qingrui Zhang*, PA-LOCO: Learning Perturbation-Adaptive Locomotion for Quadruped Robots, Accepted by 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
[26] Xinyu Zhang, Zhiyuan Xiao, Xiang Zhou, Qingrui Zhang*, SYNLOCO-VE: Synthesizing central pattern generator with reinforcement learning and velocity estimator for quadruped locomotion, Optimal Control, Applications and Methods, 2024, Early Access, DOI: 10.1002/OCA.3181
[25] Xinyu Zhang, Zhiyuan Xiao, Qingrui Zhang*, Wei Pan, SYNLOCO: Synthesizing Central Pattern Generator and Reinforcement Learning for Quadruped Locomotion. Accepted by the 2024 63rd IEEE Conference on Decision and Control (CDC).
[24] Chenghao Yu, Dengyu Zhang, Qingrui Zhang, GRF-based Predictive Flocking Control with Dynamic Pattern Formation,2024 IEEE International Conference on Robotics and Automation (ICRA), May 13-17, 2024,PACIFICO Yokohama, Japan.
[23] Te Zhang, Bo Zhu, Lei Zhang, Qingrui Zhang, Tianjiang Hu, Time-varying uncertainty and disturbance estimator without velocity measurements: Design and application, Control Engineering Practice, 2024, 143: 105780.
[22] Zheng Zhang, Qingrui Zhang*, Bo Zhu, Xiaohan Wang, Tianjiang Hu*, EASpace: Enhanced Action Space for Policy Transfer, IEEE Transactions on Neural Networks and Learning Systems, 2024, (Early Access, DOI: 10.1109/TNNLS.2023.3322591).
[21] 张清瑞,刘赟韵,孙慧杰,朱波*,固定翼无人机紧密编队的鲁棒协同跟踪控制,航空学报,2024,45 (1): 629233-1 - 629233-17.
[20] 刘坤达,刘雪明,朱波,张清瑞*,面向狭窄通道穿越的多机编队安全鲁棒控制,航空学报(在线发表,首发时间2024-01-03,DOI: 11.1929.V.20240102.1414.002)
[19] Zheng Zhang, Dengyu Zhang, Qingrui Zhang*, Wei Pan, Tianjiang Hu*, DACOOP-A: Decentralized Adaptive Cooperative Pursuit via Attention, IEEE Robotics and Automation Letters, 2024, 9(6): 5504–5511.
[18] Dengyu Zhang, Xinyu Zhang, Zheng Zhang, Bo Zhu, Qingrui Zhang*, Reinforced Potential Field for Multi-Robot Motion Planning in Cluttered Environments, 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, MI, USA.
[17] Te Zhang, Lei Zhang, Bo Zhu*, Qingrui Zhang, UDE-PLC: Uncertainty and Disturbance Estimator with Phase-lead Compensation, 2023 American Control Conference (ACC), 3877-3882, San Diego, CA, USA.
[16] Te Zhang, Shiyao Li, Bo Zhu*, Qingrui Zhang, Tianjiang Hu, Robust Control Based on a Time-varying UDE for an Under-actuated 3-DOF Helicopter, IFAC-PapersOnLine, 2023, 56 (2), 4557-4562.
[15] Zheng Zhang, Xiaohan Wang, Qingrui Zhang, and Tianjiang Hu, Multi-robot Cooperative Pursuit via Potential Field-Enhanced Reinforcement Learning, 2022 IEEE International Conference on Robotics and Automation (ICRA), May 23-27, 2022: 8808-8814, Philadelphia, PA, USA.
[14] Qingrui Zhang, Wei Pan, and Vasso Reppa. Model-reference reinforcement learning for collision-free tracking control of autonomous surface vehicles. IEEE Transactions on Intelligent Transportation Systems. 2022. 23(7):8770-8781.
[13] Qingrui Zhang* and Hugh H.T. Liu, “Robust nonlinear close formation control of multiple fixed-wing aircraft,” Journal of Guidance, Control, and Dynamics, 2021, 44 (3), 572-586
[12] Yujie Tang, Liang Hu*, Qingrui Zhang, and Wei Pan, Reinforcement Learning Compensated Extended Kalman Filter for Attitude Estimation, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6854-6859.
[11] Qingrui Zhang*, Xinyu Zhang, Bo Zhu, and Vasso Reppa. Fault Tolerant Control for Autonomous Surface Vehicles via Model Reference Reinforcement Learning. 2021 60th IEEE Conference on Decision and Control (CDC), 1536-1541.
[10] Qingrui Zhang*, Wei Pan, and Vasso Reppa. Model-Reference Reinforcement Learning Control of Autonomous Surface Vehicles. Proc. of the 59th IEEE Conference on Decision and Control (CDC), 2020. 5291-5296.
[9] Huiliao Yang, Bin Jiang, Hugh H.T. Liu, Hao Yang, and Qingrui Zhang, Attitude Synchronization For Multiple 3-DOF Helicopters With Actuator Faults, IEEE/ASME Transactions on Mechatronics, 2019, 24(2):597-608.
[8] Qingrui Zhang, Hugh HT Liu*, Aerodynamic model-based robust adaptive control for close formation flight, Aerospace Science and Technology, 2018, 79:5-16.
[7] Qingrui Zhang* and Hugh H.T. Liu, UDE-based robust command filtered backstepping control for close formation flight, IEEE Transactions on Industrial Electronics, 65 (11): 8818-8827, 2018
[6] Bo Zhu*, Qingrui Zhang, Hugh HT Liu, Design and experimental evaluation of robust motion synchronization control for multivehicle system without velocity measurements, International Journal of Robust and Nonlinear Control, 2018, 28(17): 5437-5463
[5] Pin Lyu, Jizhou Lai, Jianye Liu, Hugh H.T. Liu, and Qingrui Zhang, A Thrust Model Aided Fault Diagnosis Method for the Altitude Estimation of a Quadrotor, IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(2):1008-1019.
[4] Qingrui Zhang, Hugh H.T. Liu*, Aerodynamics Modeling and Analysis of Close Formation Flight, Journal of Aircraft, 2017,54(6):2192-2204.
[3] Qingrui Zhang, Hugh H.T. Liu*, Integrator-augmented robust adaptive control design for close formation flight, AIAA Guidance, Navigation, and Control Conference, 2017, 1255-10, Grapevine, Texas, USA
[2] Qingrui Zhang, Hugh H.T. Liu*, Robust design of close formation flight control via uncertainty and disturbance estimator, AIAA Guidance, Navigation, and Control Conference, 2016, 2102-24, San Diego, California, USA
[1] Bo Zhu, Qingrui Zhang, Hugh H.T. Liu*, A comparative study of robust attitude synchronization controllers for multiple 3-DOF helicopters, 2015 American Control Conference (ACC), 5960-5965, Chicago, IL, USA
专利授权
[1]张清瑞,熊培轩,张雷,朱波,胡天江.一种基于模型参考强化学习的无人船容错控制方法.专利号: 202111631716.8[P]. 2023.09.11,授权.
个人荣誉
- GN Patterson Student Award (2019年多伦多大学航空航天研究所最佳博士论文奖,1人/每年)
学术服务
- 会员:AIAA,IEEE.
- 审稿人(期刊):Aerospace Science and Technology, Journal of Guidance, Control, and Dynamics; IEEE Transactions on Robotics; Aerospace Science and Technology; IEEE Transactions on Systems, Man, and Cybernetics - Systems等。
- 审稿人(会议):International Conference on Intelligent Robots and Systems (IROS); IEEE Conference on Robot Learning (CoRL); IEEE Conference on Decision and Control (CDC); IEEE American Control Conference (ACC); IEEE International Conference on Robotics and Automation (ICRA)等