一、学习及国外研修经历

2009.09-2013.06,中山大学,数学与应用数学,本科

2013.09-2018.06,中山大学,应用数学,硕博连读

2016.08-2017.09,佐治亚理工学院(美国),应用数学,访问学生

二、工作经历

2018.07-2020.08,中山大学,航空航天学院,博士后

2020.09-2023.05,中山大学,航空航天学院,副研究员

2023.06至今,中山大学,航空航天学院,副教授

三、科研项目

国家自然科学基金?青年科学基金项目,主持,在研

广东省基础与应用基础研究基金自然科学基金面上项目,主持,在研

广东省基础与应用基础研究基金区域联合基金-青年基金项目,主持,结题

中国博士后科学基金面上项目,主持,结题

国家重点研发计划项目变革性技术关键科学问题,参与,在研

四、代表性论文

Yuhui Chen; Jingchi Huang; Minling Li*; Global existence and decay estimates of solutions for the compressible Prandtl type equations with small analytic data, J. Funct. Anal., 286(2024), no.7, Paper No.110322, 102pp.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; Vanishing limit for the three-dimensional incompressible Phan-Thien-Tanner system, Proc. Roy. Soc. Edinburgh Sect. A, (2024).

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; Global well-posedness and optimal time decay rates for the compressible Oldroyd-B model in R2, J. Dynam. Differential Equations, (2024).

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; The optimal time decay rates for the compressible Oldroyd-B model in R3, Appl. Anal., 103(2024), no.2, 519-531.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; Sharp rates of decay and global-in-time stability of large solutions to the three-dimensional incompressible Phan-Thien-Tanner system of polymeric flows, SIAM J. Math. Anal., 55(2023), no.5, 4537-4569.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; The sharp time-decay rates for one-dimensional compressible isentropic Navier-Stokes and magnetohydrodynamic flows, Sci. China Math., 66(2023), no.3, 475-502.

Yuhui Chen*; Wei Luo; Zheng-an Yao; Global existence and optimal time decay rates for the three-dimensional incompressible Phan-Thien-Tanner model, Anal. Appl. (Singap.), 21(2023), no.4, 931-958.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; Global well-posedness and optimal time decay rates for the generalized Phan-Thien-Tanner model in R3, Acta Math. Sci. Ser. B (Engl. Ed.), 43(2023), no.3, 1301-1322.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; The sharp time decay rates and stability of large solutions to the two-dimensional Phan-Thien-Tanner system with magnetic field, Asymptot. Anal., 129(2022), no.3-4, 451-484.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; The sharp time decay rates for the incompressible Phan-Thien-Tanner system with magnetic field in R2, Appl. Math. Lett., 129(2022), Paper No.107965, 7pp.

Yuhui Chen; Jingchi Huang; Chao Wang; Zhengzhen Wei*; Local well-posedness to the vacuum free boundary problem of full compressible Navier-Stokes equations in R3, J. Differential Equations, 300(2021), 734-785.

Yuhui Chen; Minling Li*; Qinghe Yao; Zheng-an Yao; Global well-posedness for the three-dimensional generalized Phan-Thien-Tanner model in critical Besov spaces, J. Math. Fluid Mech., 23(2021), no.3, Paper No.55, 19pp.

Yuhui Chen; Ronghua Pan*; Leilei Tong; The sharp time decay rate of the isentropic Navier-Stokes system in R3, Electron. Res. Arch., 29(2021), no.2, 1945-1967.

Yuhui Chen; Jingchi Huang*; Haiyan Xu; Zheng-An Yao; Global stability of large solutions to the 3-D compressible flow of liquid crystals, Commun. Math. Sci., 18(2020), no.4, 887-908.

Yuhui Chen; Wei Luo*; Zheng-an Yao; Blow up and global existence for the periodic Phan-Thein-Tanner model, J. Differential Equations, 267(2019), no.11, 6758-6782.

Yuhui Chen; Jingchi Huang*; Haiyan Xu; Global stability of large solutions of the 3-D compressible magnetohydrodynamic equations, Nonlinear Anal. Real World Appl., 47(2019), 272-290.

Yuhui Chen; Wei Luo*; Xiaoping Zhai; Global well-posedness for the Phan-Thein-Tanner model in critical Besov spaces without damping, J. Math. Phys., 60(2019), no.6, 061503, 14 pp.

Yuhui Chen; Jingchi Huang; Wei Luo*; Fang Yu; Local well-posedness and blow-up phenomenon for a generalization two-component Camassa-Holm system, J. Evol. Equ., 19(2019), no.4, 935-963.

Yuhui Chen; Jingchi Huang*; Global well-posedness of 3-D inhomogeneous Navier-Stokes system with initial velocity being a small perturbation of 2-D solenoidal vector field, J. Math. Anal. Appl., 465(2018), no.1, 459-499.